Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimizing Strongly Interacting Fermionic Hamiltonians (2110.10701v4)

Published 20 Oct 2021 in quant-ph, cond-mat.str-el, cs.CC, and hep-th

Abstract: The fundamental problem in much of physics and quantum chemistry is to optimize a low-degree polynomial in certain anticommuting variables. Being a quantum mechanical problem, in many cases we do not know an efficient classical witness to the optimum, or even to an approximation of the optimum. One prominent exception is when the optimum is described by a so-called "Gaussian state", also called a free fermion state. In this work we are interested in the complexity of this optimization problem when no good Gaussian state exists. Our primary testbed is the Sachdev--Ye--Kitaev (SYK) model of random degree-$q$ polynomials, a model of great current interest in condensed matter physics and string theory, and one which has remarkable properties from a computational complexity standpoint. Among other results, we give an efficient classical certification algorithm for upper-bounding the largest eigenvalue in the $q=4$ SYK model, and an efficient quantum certification algorithm for lower-bounding this largest eigenvalue; both algorithms achieve constant-factor approximations with high probability.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com