Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Expressivity of Neural Networks via Chaotic Itineraries beyond Sharkovsky's Theorem (2110.10295v1)

Published 19 Oct 2021 in cs.LG, math.DS, and nlin.CD

Abstract: Given a target function $f$, how large must a neural network be in order to approximate $f$? Recent works examine this basic question on neural network \textit{expressivity} from the lens of dynamical systems and provide novel depth-vs-width'' tradeoffs for a large family of functions $f$. They suggest that such tradeoffs are governed by the existence of \textit{periodic} points or \emph{cycles} in $f$. Our work, by further deploying dynamical systems concepts, illuminates a more subtle connection between periodicity and expressivity: we prove that periodic points alone lead to suboptimal depth-width tradeoffs and we improve upon them by demonstrating that certainchaotic itineraries'' give stronger exponential tradeoffs, even in regimes where previous analyses only imply polynomial gaps. Contrary to prior works, our bounds are nearly-optimal, tighten as the period increases, and handle strong notions of inapproximability (e.g., constant $L_1$ error). More broadly, we identify a phase transition to the \textit{chaotic regime} that exactly coincides with an abrupt shift in other notions of function complexity, including VC-dimension and topological entropy.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Clayton Sanford (17 papers)
  2. Vaggos Chatziafratis (24 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.