Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Design of AoI-Aware 5G Uplink Scheduler UsingReinforcement Learning (2110.09995v1)

Published 19 Oct 2021 in cs.NI

Abstract: Age of Information (AoI) reflects the time that is elapsed from the generation of a packet by a 5G user equipment(UE) to the reception of the packet by a controller. A design of an AoI-aware radio resource scheduler for UEs via reinforcement learning is proposed in this paper. In this paper, we consider a remote control environment in which a number of UEs are transmitting time-sensitive measurements to a remote controller. We consider the AoI minimization problem and formulate the problem as a trade-off between minimizing the sum of the expected AoI of all UEs and maximizing the throughput of the network. Inspired by the success of machine learning in solving large networking problems at low complexity, we develop a reinforcement learning-based method to solve the formulated problem. We used the state-of-the-art proximal policy optimization algorithm to solve this problem. Our simulation results showthat the proposed algorithm outperforms the considered baselines in terms of minimizing the expected AoI while maintaining the network throughput.

Citations (6)

Summary

We haven't generated a summary for this paper yet.