Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Bilateral-ViT for Robust Fovea Localization (2110.09860v2)

Published 19 Oct 2021 in eess.IV and cs.CV

Abstract: The fovea is an important anatomical landmark of the retina. Detecting the location of the fovea is essential for the analysis of many retinal diseases. However, robust fovea localization remains a challenging problem, as the fovea region often appears fuzzy, and retina diseases may further obscure its appearance. This paper proposes a novel Vision Transformer (ViT) approach that integrates information both inside and outside the fovea region to achieve robust fovea localization. Our proposed network, named Bilateral-Vision-Transformer (Bilateral-ViT), consists of two network branches: a transformer-based main network branch for integrating global context across the entire fundus image and a vessel branch for explicitly incorporating the structure of blood vessels. The encoded features from both network branches are subsequently merged with a customized Multi-scale Feature Fusion (MFF) module. Our comprehensive experiments demonstrate that the proposed approach is significantly more robust for diseased images and establishes the new state of the arts using the Messidor and PALM datasets.

Citations (7)

Summary

We haven't generated a summary for this paper yet.