Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Empirical Study: Extensive Deep Temporal Point Process (2110.09823v5)

Published 19 Oct 2021 in cs.LG, stat.AP, and stat.ME

Abstract: Temporal point process as the stochastic process on continuous domain of time is commonly used to model the asynchronous event sequence featuring with occurrence timestamps. Thanks to the strong expressivity of deep neural networks, they are emerging as a promising choice for capturing the patterns in asynchronous sequences, in the context of temporal point process. In this paper, we first review recent research emphasis and difficulties in modeling asynchronous event sequences with deep temporal point process, which can be concluded into four fields: encoding of history sequence, formulation of conditional intensity function, relational discovery of events and learning approaches for optimization. We introduce most of recently proposed models by dismantling them into the four parts, and conduct experiments by remodularizing the first three parts with the same learning strategy for a fair empirical evaluation. Besides, we extend the history encoders and conditional intensity function family, and propose a Granger causality discovery framework for exploiting the relations among multi-types of events. Because the Granger causality can be represented by the Granger causality graph, discrete graph structure learning in the framework of Variational Inference is employed to reveal latent structures of the graph. Further experiments show that the proposed framework with latent graph discovery can both capture the relations and achieve an improved fitting and predicting performance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Haitao Lin (63 papers)
  2. Cheng Tan (140 papers)
  3. Lirong Wu (67 papers)
  4. Zhangyang Gao (58 papers)
  5. Zicheng Liu (153 papers)
  6. Stan. Z. Li (7 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.