Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

State-based Episodic Memory for Multi-Agent Reinforcement Learning (2110.09817v1)

Published 19 Oct 2021 in cs.LG, cs.AI, and cs.MA

Abstract: Multi-agent reinforcement learning (MARL) algorithms have made promising progress in recent years by leveraging the centralized training and decentralized execution (CTDE) paradigm. However, existing MARL algorithms still suffer from the sample inefficiency problem. In this paper, we propose a simple yet effective approach, called state-based episodic memory (SEM), to improve sample efficiency in MARL. SEM adopts episodic memory (EM) to supervise the centralized training procedure of CTDE in MARL. To the best of our knowledge, SEM is the first work to introduce EM into MARL. We can theoretically prove that, when using for MARL, SEM has lower space complexity and time complexity than state and action based EM (SAEM), which is originally proposed for single-agent reinforcement learning. Experimental results on StarCraft multi-agent challenge (SMAC) show that introducing episodic memory into MARL can improve sample efficiency and SEM can reduce storage cost and time cost compared with SAEM.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Xiao Ma (169 papers)
  2. Wu-Jun Li (57 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.