Papers
Topics
Authors
Recent
2000 character limit reached

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Published 19 Oct 2021 in cs.SD, cs.CL, and eess.AS | (2110.09698v2)

Abstract: End-to-end TTS requires a large amount of speech/text paired data to cover all necessary knowledge, particularly how to pronounce different words in diverse contexts, so that a neural model may learn such knowledge accordingly. But in real applications, such high demand of training data is hard to be satisfied and additional knowledge often needs to be injected manually. For example, to capture pronunciation knowledge on languages without regular orthography, a complicated grapheme-to-phoneme pipeline needs to be built based on a large structured pronunciation lexicon, leading to extra, sometimes high, costs to extend neural TTS to such languages. In this paper, we propose a framework to learn to automatically extract knowledge from unstructured external resources using a novel Token2Knowledge attention module. The framework is applied to build a TTS model named Neural Lexicon Reader that extracts pronunciations from raw lexicon texts in an end-to-end manner. Experiments show the proposed model significantly reduces pronunciation errors in low-resource, end-to-end Chinese TTS, and the lexicon-reading capability can be transferred to other languages with a smaller amount of data.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.