Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ifMixup: Interpolating Graph Pair to Regularize Graph Classification (2110.09344v3)

Published 18 Oct 2021 in cs.LG and cs.AI

Abstract: We present a simple and yet effective interpolation-based regularization technique, aiming to improve the generalization of Graph Neural Networks (GNNs) on supervised graph classification. We leverage Mixup, an effective regularizer for vision, where random sample pairs and their labels are interpolated to create synthetic images for training. Unlike images with grid-like coordinates, graphs have arbitrary structure and topology, which can be very sensitive to any modification that alters the graph's semantic meanings. This posts two unanswered questions for Mixup-like regularization schemes: Can we directly mix up a pair of graph inputs? If so, how well does such mixing strategy regularize the learning of GNNs? To answer these two questions, we propose ifMixup, which first adds dummy nodes to make two graphs have the same input size and then simultaneously performs linear interpolation between the aligned node feature vectors and the aligned edge representations of the two graphs. We empirically show that such simple mixing schema can effectively regularize the classification learning, resulting in superior predictive accuracy to popular graph augmentation and GNN methods.

Citations (7)

Summary

We haven't generated a summary for this paper yet.