Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Completeness and Complexity of the Lifted Dynamic Junction Tree Algorithm (2110.09197v3)

Published 18 Oct 2021 in cs.AI

Abstract: For static lifted inference algorithms, completeness, i.e., domain liftability, is extensively studied. However, so far no domain liftability results for temporal lifted inference algorithms exist. In this paper, we close this gap. More precisely, we contribute the first completeness and complexity analysis for a temporal lifted algorithm, the socalled lifted dynamic junction tree algorithm (LDJT), which is the only exact lifted temporal inference algorithm out there. To handle temporal aspects efficiently, LDJT uses conditional independences to proceed in time, leading to restrictions w.r.t. elimination orders. We show that these restrictions influence the domain liftability results and show that one particular case while proceeding in time, has to be excluded from FO12 . Additionally, for the complexity of LDJT, we prove that the lifted width is in even more cases smaller than the corresponding treewidth in comparison to static inference.

Summary

We haven't generated a summary for this paper yet.