Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EmbRace: Accelerating Sparse Communication for Distributed Training of NLP Neural Networks (2110.09132v2)

Published 18 Oct 2021 in cs.LG and cs.MA

Abstract: Distributed data-parallel training has been widely adopted for deep neural network (DNN) models. Although current deep learning (DL) frameworks scale well for dense models like image classification models, we find that these DL frameworks have relatively low scalability for sparse models like NLP models that have highly sparse embedding tables. Most existing works overlook the sparsity of model parameters thus suffering from significant but unnecessary communication overhead. In this paper, we propose EmbRace, an efficient communication framework to accelerate communications of distributed training for sparse models. EmbRace introduces Sparsity-aware Hybrid Communication, which integrates AlltoAll and model parallelism into data-parallel training, so as to reduce the communication overhead of highly sparse parameters. To effectively overlap sparse communication with both backward and forward computation, EmbRace further designs a 2D Communication Scheduling approach which optimizes the model computation procedure, relaxes the dependency of embeddings, and schedules the sparse communications of each embedding row with a priority queue. We have implemented a prototype of EmbRace based on PyTorch and Horovod, and conducted comprehensive evaluations with four representative NLP models. Experimental results show that EmbRace achieves up to 2.41X speedup compared to the state-of-the-art distributed training baselines.

Citations (1)

Summary

We haven't generated a summary for this paper yet.