Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Capsule Graph Neural Networks with EM Routing (2110.09039v1)

Published 18 Oct 2021 in cs.LG

Abstract: To effectively classify graph instances, graph neural networks need to have the capability to capture the part-whole relationship existing in a graph. A capsule is a group of neurons representing complicated properties of entities, which has shown its advantages in traditional convolutional neural networks. This paper proposed novel Capsule Graph Neural Networks that use the EM routing mechanism (CapsGNNEM) to generate high-quality graph embeddings. Experimental results on a number of real-world graph datasets demonstrate that the proposed CapsGNNEM outperforms nine state-of-the-art models in graph classification tasks.

Citations (4)

Summary

We haven't generated a summary for this paper yet.