Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Segal-Bargmann Transforms Associated to a Family of Coupled Supersymmetries (2110.08995v2)

Published 18 Oct 2021 in math.FA, math-ph, and math.MP

Abstract: The Segal-Bargmann transform is a Lie algebra and Hilbert space isomorphism between real and complex representations of the oscillator algebra. The Segal-Bargmann transform is useful in time-frequency analysis as it is closely related to the short-time Fourier transform. The Segal-Bargmann space provides a useful example of a reproducing kernel Hilbert space. Coupled supersymmetries (coupled SUSYs) are generalizations of the quantum harmonic oscillator that have a built-in supersymmetric nature and enjoy similar properties to the quantum harmonic oscillator. In this paper, we will develop Segal-Bargmann transforms for a specific class of coupled SUSYs which includes the quantum harmonic oscillator as a special case. We will show that the associated Segal-Bargmann spaces are distinct from the usual Segal-Bargmann space: their associated weight functions are no longer Gaussian and are spanned by stricter subsets of the holomorphic polynomials. The coupled SUSY Segal-Bargmann spaces provide new examples of reproducing kernel Hilbert spaces.

Summary

We haven't generated a summary for this paper yet.