Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uniform subconvex bounds for Rankin-Selberg $L$-functions (2110.08682v1)

Published 16 Oct 2021 in math.NT

Abstract: Let $f$ be a Maass cusp form for $\rm SL_2(\mathbb{Z})$ with Laplace eigenvalue $1/4+\mu_f2$, $\mu_f>0$. Let $g$ be an arbitrary but fixed holomorphic or Maass cusp form for $\rm SL_2(\mathbb{Z})$. In this paper, we establish the following uniform subconvexity bound for the Rankin-Selberg $L$-function $L(s,f\otimes g)$ $$ L\left(1/2+it,f\otimes g\right)\ll (\mu_f+|t|){9/10+\varepsilon}, $$ where the implied constant depends only on $\varepsilon$ and $g$.

Summary

We haven't generated a summary for this paper yet.