Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conceptual Modeling and Artificial Intelligence: Mutual Benefits from Complementary Worlds (2110.08637v1)

Published 16 Oct 2021 in cs.AI and cs.SE

Abstract: Conceptual modeling (CM) applies abstraction to reduce the complexity of a system under study (e.g., an excerpt of reality). As a result of the conceptual modeling process a human interpretable, formalized representation (i.e., a conceptual model) is derived which enables understanding and communication among humans, and processing by machines. AI algorithms are also applied to complex realities (regularly represented by vast amounts of data) to identify patterns or to classify entities in the data. Aside from the commonalities of both approaches, a significant difference can be observed by looking at the results. While conceptual models are comprehensible, reproducible, and explicit knowledge representations, AI techniques are capable of efficiently deriving an output from a given input while acting as a black box. AI solutions often lack comprehensiveness and reproducibility. Even the developers of AI systems can't explain why a certain output is derived. In the Conceptual Modeling meets Artificial Intelligence (CMAI) workshop, we are interested in tackling the intersection of the two, thus far, mostly isolated approached disciplines of CM and AI. The workshop embraces the assumption, that manifold mutual benefits can be realized by i) investigating what Conceptual Modeling (CM) can contribute to AI, and ii) the other way around, what AI can contribute to CM.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Dominik Bork (5 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.