Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explore before Moving: A Feasible Path Estimation and Memory Recalling Framework for Embodied Navigation (2110.08571v1)

Published 16 Oct 2021 in cs.CV

Abstract: An embodied task such as embodied question answering (EmbodiedQA), requires an agent to explore the environment and collect clues to answer a given question that related with specific objects in the scene. The solution of such task usually includes two stages, a navigator and a visual Q&A module. In this paper, we focus on the navigation and solve the problem of existing navigation algorithms lacking experience and common sense, which essentially results in a failure finding target when robot is spawn in unknown environments. Inspired by the human ability to think twice before moving and conceive several feasible paths to seek a goal in unfamiliar scenes, we present a route planning method named Path Estimation and Memory Recalling (PEMR) framework. PEMR includes a "looking ahead" process, \textit{i.e.} a visual feature extractor module that estimates feasible paths for gathering 3D navigational information, which is mimicking the human sense of direction. PEMR contains another process ``looking behind'' process that is a memory recall mechanism aims at fully leveraging past experience collected by the feature extractor. Last but not the least, to encourage the navigator to learn more accurate prior expert experience, we improve the original benchmark dataset and provide a family of evaluation metrics for diagnosing both navigation and question answering modules. We show strong experimental results of PEMR on the EmbodiedQA navigation task.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yang Wu (175 papers)
  2. Shirui Feng (1 paper)
  3. Guanbin Li (177 papers)
  4. Liang Lin (318 papers)

Summary

We haven't generated a summary for this paper yet.