Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Reinforcement Learning for Practical Phase Shift Optimization in RIS-aided MISO URLLC Systems (2110.08513v3)

Published 16 Oct 2021 in cs.IT and math.IT

Abstract: We study the joint active/passive beamforming and channel blocklength (CBL) allocation in a non-ideal reconfigurable intelligent surface (RIS)-aided ultra-reliable and low-latency communication (URLLC) system. The considered scenario is a finite blocklength (FBL) regime and the problem is solved by leveraging a novel deep reinforcement learning (DRL) algorithm named twin-delayed deep deterministic policy gradient (TD3). First, assuming an industrial automation system with multiple actuators, the signal-to-interference-plus-noise ratio and achievable rate in the FBL regime are identified for each actuator in terms of the phase shift configuration matrix at the RIS. Next, the joint active/passive beamforming and CBL optimization problem is formulated where the objective is to maximize the total achievable FBL rate in all actuators, subject to non-linear amplitude response at the RIS elements, BS transmit power budget, and total available CBL. Since the amplitude response equality constraint is highly non-convex and non-linear, we resort to employing an actor-critic policy gradient DRL algorithm based on TD3. The considered method relies on interacting RIS with the industrial automation environment by taking actions which are the phase shifts at the RIS elements, CBL variables, and BS beamforming to maximize the expected observed reward, i.e., the total FBL rate. We assess the performance loss of the system when the RIS is non-ideal, i.e., with non-linear amplitude response, and compare it with ideal RIS without impairments. The numerical results show that optimizing the RIS phase shifts, BS beamforming, and CBL variables via the proposed TD3 method is highly beneficial to improving the network total FBL rate as the proposed method with deterministic policy outperforms conventional methods.

Citations (12)

Summary

We haven't generated a summary for this paper yet.