Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gradient Descent on Infinitely Wide Neural Networks: Global Convergence and Generalization (2110.08084v1)

Published 15 Oct 2021 in cs.LG, math.OC, math.ST, and stat.TH

Abstract: Many supervised machine learning methods are naturally cast as optimization problems. For prediction models which are linear in their parameters, this often leads to convex problems for which many mathematical guarantees exist. Models which are non-linear in their parameters such as neural networks lead to non-convex optimization problems for which guarantees are harder to obtain. In this review paper, we consider two-layer neural networks with homogeneous activation functions where the number of hidden neurons tends to infinity, and show how qualitative convergence guarantees may be derived.

Citations (22)

Summary

We haven't generated a summary for this paper yet.