Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Partial Quantile Regression (2110.07998v1)

Published 15 Oct 2021 in stat.ME and stat.CO

Abstract: Partial least squares (PLS) is a dimensionality reduction technique used as an alternative to ordinary least squares (OLS) in situations where the data is colinear or high dimensional. Both PLS and OLS provide mean based estimates, which are extremely sensitive to the presence of outliers or heavy tailed distributions. In contrast, quantile regression is an alternative to OLS that computes robust quantile based estimates. In this work, the multivariate PLS is extended to the quantile regression framework, obtaining a theoretical formulation of the problem and a robust dimensionality reduction technique that we call fast partial quantile regression (fPQR), that provides quantile based estimates. An efficient implementation of fPQR is also derived, and its performance is studied through simulation experiments and the chemometrics well known biscuit dough dataset, a real high dimensional example.

Citations (6)

Summary

We haven't generated a summary for this paper yet.