Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$k\texttt{-experts}$ -- Online Policies and Fundamental Limits (2110.07881v2)

Published 15 Oct 2021 in cs.IT, cs.LG, and math.IT

Abstract: We introduce the $\texttt{$k$-experts}$ problem - a generalization of the classic Prediction with Expert's Advice framework. Unlike the classic version, where the learner selects exactly one expert from a pool of $N$ experts at each round, in this problem, the learner can select a subset of $k$ experts at each round $(1\leq k\leq N)$. The reward obtained by the learner at each round is assumed to be a function of the $k$ selected experts. The primary objective is to design an online learning policy with a small regret. In this pursuit, we propose $\texttt{SAGE}$ ($\textbf{Sa}$mpled Hed$\textbf{ge}$) - a framework for designing efficient online learning policies by leveraging statistical sampling techniques. For a wide class of reward functions, we show that $\texttt{SAGE}$ either achieves the first sublinear regret guarantee or improves upon the existing ones. Furthermore, going beyond the notion of regret, we fully characterize the mistake bounds achievable by online learning policies for stable loss functions. We conclude the paper by establishing a tight regret lower bound for a variant of the $\texttt{$k$-experts}$ problem and carrying out experiments with standard datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Samrat Mukhopadhyay (14 papers)
  2. Sourav Sahoo (13 papers)
  3. Abhishek Sinha (60 papers)
Citations (6)