Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Network Representation Learning: From Preprocessing, Feature Extraction to Node Embedding (2110.07582v1)

Published 14 Oct 2021 in cs.SI and cs.LG

Abstract: Network representation learning (NRL) advances the conventional graph mining of social networks, knowledge graphs, and complex biomedical and physics information networks. Over dozens of network representation learning algorithms have been reported in the literature. Most of them focus on learning node embeddings for homogeneous networks, but they differ in the specific encoding schemes and specific types of node semantics captured and used for learning node embedding. This survey paper reviews the design principles and the different node embedding techniques for network representation learning over homogeneous networks. To facilitate the comparison of different node embedding algorithms, we introduce a unified reference framework to divide and generalize the node embedding learning process on a given network into preprocessing steps, node feature extraction steps and node embedding model training for a NRL task such as link prediction and node clustering. With this unifying reference framework, we highlight the representative methods, models, and techniques used at different stages of the node embedding model learning process. This survey not only helps researchers and practitioners to gain an in-depth understanding of different network representation learning techniques but also provides practical guidelines for designing and developing the next generation of network representation learning algorithms and systems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Jingya Zhou (6 papers)
  2. Ling Liu (132 papers)
  3. Wenqi Wei (55 papers)
  4. Jianxi Fan (5 papers)
Citations (63)