Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-task problems are not multi-objective (2110.07301v1)

Published 14 Oct 2021 in cs.LG and stat.ML

Abstract: Multi-objective optimization (MOO) aims at finding a set of optimal configurations for a given set of objectives. A recent line of work applies MOO methods to the typical Machine Learning (ML) setting, which becomes multi-objective if a model should optimize more than one objective, for instance in fair machine learning. These works also use Multi-Task Learning (MTL) problems to benchmark MOO algorithms treating each task as independent objective. In this work we show that MTL problems do not resemble the characteristics of MOO problems. In particular, MTL losses are not competing in case of a sufficiently expressive single model. As a consequence, a single model can perform just as well as optimizing all objectives with independent models, rendering MOO inapplicable. We provide evidence with extensive experiments on the widely used Multi-Fashion-MNIST datasets. Our results call for new benchmarks to evaluate MOO algorithms for ML. Our code is available at: https://github.com/ruchtem/moo-mtl.

Citations (4)

Summary

We haven't generated a summary for this paper yet.