Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Stability of Low Pass Graph Filter With a Large Number of Edge Rewires (2110.07234v1)

Published 14 Oct 2021 in eess.SP, cs.LG, and stat.ML

Abstract: Recently, the stability of graph filters has been studied as one of the key theoretical properties driving the highly successful graph convolutional neural networks (GCNs). The stability of a graph filter characterizes the effect of topology perturbation on the output of a graph filter, a fundamental building block for GCNs. Many existing results have focused on the regime of small perturbation with a small number of edge rewires. However, the number of edge rewires can be large in many applications. To study the latter case, this work departs from the previous analysis and proves a bound on the stability of graph filter relying on the filter's frequency response. Assuming the graph filter is low pass, we show that the stability of the filter depends on perturbation to the community structure. As an application, we show that for stochastic block model graphs, the graph filter distance converges to zero when the number of nodes approaches infinity. Numerical simulations validate our findings.

Citations (7)

Summary

We haven't generated a summary for this paper yet.