Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Supervised Domain Adaptation for Visual Navigation with Global Map Consistency (2110.07184v1)

Published 14 Oct 2021 in cs.CV and cs.RO

Abstract: We propose a light-weight, self-supervised adaptation for a visual navigation agent to generalize to unseen environment. Given an embodied agent trained in a noiseless environment, our objective is to transfer the agent to a noisy environment where actuation and odometry sensor noise is present. Our method encourages the agent to maximize the consistency between the global maps generated at different time steps in a round-trip trajectory. The proposed task is completely self-supervised, not requiring any supervision from ground-truth pose data or explicit noise model. In addition, optimization of the task objective is extremely light-weight, as training terminates within a few minutes on a commodity GPU. Our experiments show that the proposed task helps the agent to successfully transfer to new, noisy environments. The transferred agent exhibits improved localization and mapping accuracy, further leading to enhanced performance in downstream visual navigation tasks. Moreover, we demonstrate test-time adaptation with our self-supervised task to show its potential applicability in real-world deployment.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Eun Sun Lee (8 papers)
  2. Junho Kim (57 papers)
  3. Young Min Kim (37 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.