Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bandwidth Utilization Side-Channel on ML Inference Accelerators (2110.07157v1)

Published 14 Oct 2021 in cs.CR

Abstract: Accelerators used for ML inference provide great performance benefits over CPUs. Securing confidential model in inference against off-chip side-channel attacks is critical in harnessing the performance advantage in practice. Data and memory address encryption has been recently proposed to defend against off-chip attacks. In this paper, we demonstrate that bandwidth utilization on the interface between accelerators and the weight storage can serve a side-channel for leaking confidential ML model architecture. This side channel is independent of the type of interface, leaks even in the presence of data and memory address encryption and can be monitored through performance counters or through bus contention from an on-chip unprivileged process.

Citations (3)

Summary

We haven't generated a summary for this paper yet.