Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modelling wave propagation in elastic solids via high-order accurate implicit-mesh discontinuous Galerkin methods (2110.07079v1)

Published 13 Oct 2021 in math.NA and cs.NA

Abstract: A high-order accurate implicit-mesh discontinuous Galerkin framework for wave propagation in single-phase and bi-phase solids is presented. The framework belongs to the embedded-boundary techniques and its novelty regards the spatial discretization, which enables boundary and interface conditions to be enforced with high-order accuracy on curved embedded geometries. High-order accuracy is achieved via high-order quadrature rules for implicitly-defined domains and boundaries, whilst a cell-merging strategy addresses the presence of small cut cells. The framework is used to discretize the governing equations of elastodynamics, written using a first-order hyperbolic momentum-strain formulation, and an exact Riemann solver is employed to compute the numerical flux at the interface between dissimilar materials with general anisotropic properties. The space-discretized equations are then advanced in time using explicit high-order Runge-Kutta algorithms. Several two- and three-dimensional numerical tests including dynamic adaptive mesh refinement are presented to demonstrate the high-order accuracy and the capability of the method in the elastodynamic analysis of single- and bi-phases solids containing complex geometries.

Citations (13)

Summary

We haven't generated a summary for this paper yet.