Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Why Out-of-distribution Detection in CNNs Does Not Like Mahalanobis -- and What to Use Instead (2110.07043v1)

Published 13 Oct 2021 in cs.LG and cs.CV

Abstract: Convolutional neural networks applied for real-world classification tasks need to recognize inputs that are far or out-of-distribution (OoD) with respect to the known or training data. To achieve this, many methods estimate class-conditional posterior probabilities and use confidence scores obtained from the posterior distributions. Recent works propose to use multivariate Gaussian distributions as models of posterior distributions at different layers of the CNN (i.e., for low- and upper-level features), which leads to the confidence scores based on the Mahalanobis distance. However, this procedure involves estimating probability density in high dimensional data using the insufficient number of observations (e.g. the dimensionality of features at the last two layers in the ResNet-101 model are 2048 and 1024, with ca. 1000 observations per class used to estimate density). In this work, we want to address this problem. We show that in many OoD studies in high-dimensional data, LOF-based (Local Outlierness-Factor) methods outperform the parametric, Mahalanobis distance-based methods. This motivates us to propose the nonparametric, LOF-based method of generating the confidence scores for CNNs. We performed several feasibility studies involving ResNet-101 and EffcientNet-B3, based on CIFAR-10 and ImageNet (as known data), and CIFAR-100, SVHN, ImageNet2010, Places365, or ImageNet-O (as outliers). We demonstrated that nonparametric LOF-based confidence estimation can improve current Mahalanobis-based SOTA or obtain similar performance in a simpler way.

Summary

We haven't generated a summary for this paper yet.