Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable Graph Embedding LearningOn A Single GPU (2110.06991v2)

Published 13 Oct 2021 in cs.LG and cs.DC

Abstract: Graph embedding techniques have attracted growing interest since they convert the graph data into continuous and low-dimensional space. Effective graph analytic provides users a deeper understanding of what is behind the data and thus can benefit a variety of machine learning tasks. With the current scale of real-world applications, most graph analytic methods suffer high computation and space costs. These methods and systems can process a network with thousands to a few million nodes. However, scaling to large-scale networks remains a challenge. The complexity of training graph embedding system requires the use of existing accelerators such as GPU. In this paper, we introduce a hybrid CPU-GPU framework that addresses the challenges of learning embedding of large-scale graphs. The performance of our method is compared qualitatively and quantitatively with the existing embedding systems on common benchmarks. We also show that our system can scale training to datasets with an order of magnitude greater than a single machine's total memory capacity. The effectiveness of the learned embedding is evaluated within multiple downstream applications. The experimental results indicate the effectiveness of the learned embedding in terms of performance and accuracy.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Azita Nouri (2 papers)
  2. Philip E. Davis (5 papers)
  3. Pradeep Subedi (8 papers)
  4. Manish Parashar (20 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.