Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optical Flow Reusing for High-Efficiency Space-Time Video Super Resolution (2110.06786v3)

Published 13 Oct 2021 in cs.CV

Abstract: In this paper, we consider the task of space-time video super-resolution (ST-VSR), which can increase the spatial resolution and frame rate for a given video simultaneously. Despite the remarkable progress of recent methods, most of them still suffer from high computational costs and inefficient long-range information usage. To alleviate these problems, we propose a Bidirectional Recurrence Network (BRN) with the optical-flow-reuse strategy to better use temporal knowledge from long-range neighboring frames for high-efficiency reconstruction. Specifically, an efficient and memory-saving multi-frame motion utilization strategy is proposed by reusing the intermediate flow of adjacent frames, which considerably reduces the computation burden of frame alignment compared with traditional LSTM-based designs. In addition, the proposed hidden state in BRN is updated by the reused optical flow and refined by the Feature Refinement Module (FRM) for further optimization. Moreover, by utilizing intermediate flow estimation, the proposed method can inference non-linear motion and restore details better. Extensive experiments demonstrate that our optical-flow-reuse-based bidirectional recurrent network (OFR-BRN) is superior to state-of-the-art methods in accuracy and efficiency.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yuantong Zhang (5 papers)
  2. Huairui Wang (5 papers)
  3. Han Zhu (50 papers)
  4. Zhenzhong Chen (61 papers)
Citations (13)

Summary

We haven't generated a summary for this paper yet.