Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An algebra isomorphism on $U(\mathfrak{gl}_n)$ (2110.06561v2)

Published 13 Oct 2021 in math.RT

Abstract: For each positive integer $n$, let $\mathfrak{s}n=\mathfrak{gl}_n\ltimes \mathbb{C}n$. We show that $U(\mathfrak{s}{n}){X{n}}\cong \mathcal{D}{n}\otimes U(\mathfrak{s}{n-1})$ for any $n\in\mathbb{Z}{\geq 2}$, where $U(\mathfrak{s}{n}){X{n}}$ is the localization of $U(\mathfrak{s}{n})$ with respect to the subset $X_n:={e_1{i_1}\cdots e{n}{i_{n}}\mid i_1,\dots,i_{n}\in \mathbb{Z}+}$, and $\mathcal{D}{n}$ is the Weyl algebra $\mathbb{C}[x_1{\pm 1}, \cdots, x_{n}{\pm 1}, \frac{\partial}{\partial x_1},\cdots, \frac{\partial}{\partial x_{n}}]$. As an application, we give a new proof of the Gelfand-Kirillov conjecture for $\mathfrak{s}n$ and $\mathfrak{gl}_n$. Moreover we show that the category of Harish-Chandra $U(\mathfrak{s}{n}){X_n}$-modules with a fixed weight support is equivalent to the category of finite dimensional $\mathfrak{s}{n-1}$-modules whose representation type is wild, for any $n\in \mathbb{Z}_{\geq 2}$.

Summary

We haven't generated a summary for this paper yet.