Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EIHW-MTG DiCOVA 2021 Challenge System Report (2110.06543v1)

Published 13 Oct 2021 in cs.SD, cs.LG, and eess.AS

Abstract: This paper aims to automatically detect COVID-19 patients by analysing the acoustic information embedded in coughs. COVID-19 affects the respiratory system, and, consequently, respiratory-related signals have the potential to contain salient information for the task at hand. We focus on analysing the spectrogram representations of coughing samples with the aim to investigate whether COVID-19 alters the frequency content of these signals. Furthermore, this work also assesses the impact of gender in the automatic detection of COVID-19. To extract deep learnt representations of the spectrograms, we compare the performance of a cough-specific, and a Resnet18 pre-trained Convolutional Neural Network (CNN). Additionally, our approach explores the use of contextual attention, so the model can learn to highlight the most relevant deep learnt features extracted by the CNN. We conduct our experiments on the dataset released for the Cough Sound Track of the DiCOVA 2021 Challenge. The best performance on the test set is obtained using the Resnet18 pre-trained CNN with contextual attention, which scored an Area Under the Curve (AUC) of 70.91 at 80% sensitivity.

Summary

We haven't generated a summary for this paper yet.