Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Winning the ICCV'2021 VALUE Challenge: Task-aware Ensemble and Transfer Learning with Visual Concepts (2110.06476v1)

Published 13 Oct 2021 in cs.CV

Abstract: The VALUE (Video-And-Language Understanding Evaluation) benchmark is newly introduced to evaluate and analyze multi-modal representation learning algorithms on three video-and-language tasks: Retrieval, QA, and Captioning. The main objective of the VALUE challenge is to train a task-agnostic model that is simultaneously applicable for various tasks with different characteristics. This technical report describes our winning strategies for the VALUE challenge: 1) single model optimization, 2) transfer learning with visual concepts, and 3) task-aware ensemble. The first and third strategies are designed to address heterogeneous characteristics of each task, and the second one is to leverage rich and fine-grained visual information. We provide a detailed and comprehensive analysis with extensive experimental results. Based on our approach, we ranked first place on the VALUE and QA phases for the competition.

Citations (4)

Summary

We haven't generated a summary for this paper yet.