Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exponential Ergodicity for Time-Periodic McKean-Vlasov SDEs (2110.06473v2)

Published 13 Oct 2021 in math.PR

Abstract: As extensions to the corresponding results derived for time homogeneous McKean- Vlasov SDEs, the exponential ergodicity is proved for time-periodic distribution dependent SDEs in three different situations: 1) in the quadratic Wasserstein distance and relative entropy for the dissipative case; 2) in the Wasserstein distance induced by a cost function for the partially dissipative case; and 3) in the weighted Wasserstein distance induced by a cost function and a Lyapunov function for the fully non-dissipative case. The main results are illustrated by time inhomogeneous granular media equations, and are extended to reflecting McKean-Vlasov SDEs in a convex domain.

Summary

We haven't generated a summary for this paper yet.