Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A SAT Approach to Twin-Width (2110.06146v1)

Published 12 Oct 2021 in cs.DS, cs.LO, and math.CO

Abstract: The graph invariant twin-width was recently introduced by Bonnet, Kim, Thomass\'e, and Watrigan. Problems expressible in first-order logic, which includes many prominent NP-hard problems, are tractable on graphs of bounded twin-width if a certificate for the twin-width bound is provided as an input. Computing such a certificate, however, is an intrinsic problem, for which no nontrivial algorithm is known. In this paper, we propose the first practical approach for computing the twin-width of graphs together with the corresponding certificate. We propose efficient SAT-encodings that rely on a characterization of twin-width based on elimination sequences. This allows us to determine the twin-width of many famous graphs with previously unknown twin-width. We utilize our encodings to identify the smallest graphs for a given twin-width bound $d \in {1,\dots,4}$.

Citations (23)

Summary

We haven't generated a summary for this paper yet.