Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MoRS: An Approximate Fault Modelling Framework for Reduced-Voltage SRAMs (2110.05855v2)

Published 12 Oct 2021 in cs.AR

Abstract: On-chip memory (usually based on Static RAMs-SRAMs) are crucial components for various computing devices including heterogeneous devices, e.g., GPUs, FPGAs, ASICs to achieve high performance. Modern workloads such as Deep Neural Networks (DNNs) running on these heterogeneous fabrics are highly dependent on the on-chip memory architecture for efficient acceleration. Hence, improving the energy-efficiency of such memories directly leads to an efficient system. One of the common methods to save energy is undervolting i.e., supply voltage underscaling below the nominal level. Such systems can be safely undervolted without incurring faults down to a certain voltage limit. This safe range is also called voltage guardband. However, reducing voltage below the guardband level without decreasing frequency causes timing-based faults. In this paper, we propose MoRS, a framework that generates the first approximate undervolting fault model using real faults extracted from experimental undervolting studies on SRAMs to build the model. We inject the faults generated by MoRS into the on-chip memory of the DNN accelerator to evaluate the resilience of the system under the test. MoRS has the advantage of simplicity without any need for high-time overhead experiments while being accurate enough in comparison to a fully randomly-generated fault injection approach. We evaluate our experiment in popular DNN workloads by mapping weights to SRAMs and measure the accuracy difference between the output of the MoRS and the real data. Our results show that the maximum difference between real fault data and the output fault model of MoRS is 6.21%, whereas the maximum difference between real data and random fault injection model is 23.2%. In terms of average proximity to the real data, the output of MoRS outperforms the random fault injection approach by 3.21x.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Behzad Salami (18 papers)
  2. Oğuz Ergin (22 papers)
  3. Adrian Cristal Kestelman (7 papers)
  4. Ismail Emir Yüksel (9 papers)
  5. Osman Sabri Ünsal (1 paper)
Citations (5)

Summary

We haven't generated a summary for this paper yet.