Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting the Efficiency of CO$_2$ Sequestering by Metal Organic Frameworks Through Machine Learning Analysis of Structural and Electronic Properties (2110.05753v1)

Published 12 Oct 2021 in cs.LG and physics.chem-ph

Abstract: Due the alarming rate of climate change, the implementation of efficient CO$_2$ capture has become crucial. This project aims to create an algorithm that predicts the uptake of CO$_2$ adsorbing Metal-Organic Frameworks (MOFs) by using Machine Learning. These values will in turn gauge the efficiency of these MOFs and provide scientists who are looking to maximize the uptake a way to know whether or not the MOF is worth synthesizing. This algorithm will save resources such as time and equipment as scientists will be able to disregard hypothetical MOFs with low efficiencies. In addition, this paper will also highlight the most important features within the data set. This research will contribute to enable the rapid synthesis of CO$_2$ adsorbing MOFs.

Summary

We haven't generated a summary for this paper yet.