Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Improving Model-Free Algorithms for Decentralized Multi-Agent Reinforcement Learning (2110.05707v2)

Published 12 Oct 2021 in cs.LG, cs.AI, and cs.MA

Abstract: Multi-agent reinforcement learning (MARL) algorithms often suffer from an exponential sample complexity dependence on the number of agents, a phenomenon known as \emph{the curse of multiagents}. In this paper, we address this challenge by investigating sample-efficient model-free algorithms in \emph{decentralized} MARL, and aim to improve existing algorithms along this line. For learning (coarse) correlated equilibria in general-sum Markov games, we propose \emph{stage-based} V-learning algorithms that significantly simplify the algorithmic design and analysis of recent works, and circumvent a rather complicated no-\emph{weighted}-regret bandit subroutine. For learning Nash equilibria in Markov potential games, we propose an independent policy gradient algorithm with a decentralized momentum-based variance reduction technique. All our algorithms are decentralized in that each agent can make decisions based on only its local information. Neither communication nor centralized coordination is required during learning, leading to a natural generalization to a large number of agents. We also provide numerical simulations to corroborate our theoretical findings.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Weichao Mao (11 papers)
  2. Lin F. Yang (86 papers)
  3. Kaiqing Zhang (70 papers)
  4. Tamer Başar (200 papers)
Citations (53)