Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence Rate for Degenerate Partial and Stochastic Differential Equations via weak Poincaré Inequalities (2110.05536v1)

Published 11 Oct 2021 in math.PR and math.FA

Abstract: We employ weak hypocoercivity methods to study the long-term behavior of operator semigroups generated by degenerate Kolmogorov operators with variable second-order coefficients, which solve the associated abstract Cauchy problem. We prove essential m-dissipativity of the operator, which extends previous results and is key to the rigorous analysis required. We give estimates for the $L2$-convergence rate by using weak Poincar\'e inequalities. As an application, we obtain estimates for the (sub-)exponential convergence rate of solutions to the corresponding degenerate Fokker-Planck equations and of weak solutions to the corresponding degenerate stochastic differential equation with multiplicative noise.

Summary

We haven't generated a summary for this paper yet.