Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluating generative networks using Gaussian mixtures of image features (2110.05240v2)

Published 8 Oct 2021 in cs.CV and cs.LG

Abstract: We develop a measure for evaluating the performance of generative networks given two sets of images. A popular performance measure currently used to do this is the Fr\'echet Inception Distance (FID). FID assumes that images featurized using the penultimate layer of Inception-v3 follow a Gaussian distribution, an assumption which cannot be violated if we wish to use FID as a metric. However, we show that Inception-v3 features of the ImageNet dataset are not Gaussian; in particular, every single marginal is not Gaussian. To remedy this problem, we model the featurized images using Gaussian mixture models (GMMs) and compute the 2-Wasserstein distance restricted to GMMs. We define a performance measure, which we call WaM, on two sets of images by using Inception-v3 (or another classifier) to featurize the images, estimate two GMMs, and use the restricted $2$-Wasserstein distance to compare the GMMs. We experimentally show the advantages of WaM over FID, including how FID is more sensitive than WaM to imperceptible image perturbations. By modelling the non-Gaussian features obtained from Inception-v3 as GMMs and using a GMM metric, we can more accurately evaluate generative network performance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Lorenzo Luzi (13 papers)
  2. Carlos Ortiz Marrero (15 papers)
  3. Nile Wynar (1 paper)
  4. Richard G. Baraniuk (141 papers)
  5. Michael J. Henry (3 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.