Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Closer Look at Prototype Classifier for Few-shot Image Classification (2110.05076v5)

Published 11 Oct 2021 in cs.CV and cs.LG

Abstract: The prototypical network is a prototype classifier based on meta-learning and is widely used for few-shot learning because it classifies unseen examples by constructing class-specific prototypes without adjusting hyper-parameters during meta-testing. Interestingly, recent research has attracted a lot of attention, showing that training a new linear classifier, which does not use a meta-learning algorithm, performs comparably with the prototypical network. However, the training of a new linear classifier requires the retraining of the classifier every time a new class appears. In this paper, we analyze how a prototype classifier works equally well without training a new linear classifier or meta-learning. We experimentally find that directly using the feature vectors, which is extracted by using standard pre-trained models to construct a prototype classifier in meta-testing, does not perform as well as the prototypical network and training new linear classifiers on the feature vectors of pre-trained models. Thus, we derive a novel generalization bound for a prototypical classifier and show that the transformation of a feature vector can improve the performance of prototype classifiers. We experimentally investigate several normalization methods for minimizing the derived bound and find that the same performance can be obtained by using the L2 normalization and minimizing the ratio of the within-class variance to the between-class variance without training a new classifier or meta-learning.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Mingcheng Hou (1 paper)
  2. Issei Sato (82 papers)
Citations (14)

Summary

We haven't generated a summary for this paper yet.