Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning for Uplink Spectral Efficiency in Cell-Free Massive MIMO Systems (2110.04968v1)

Published 11 Oct 2021 in cs.IT, math.IT, and math.OC

Abstract: In this paper, we introduce a Deep Neural Network (DNN) to maximize the Proportional Fairness (PF) of the Spectral Efficiency (SE) of uplinks in Cell-Free (CF) massive Multiple-Input Multiple-Output (MIMO) systems. The problem of maximizing the PF of the SE is a non-convex optimization problem in the design variables. We will develop a DNN which takes pilot sequences and large-scale fading coefficients of the users as inputs and produces the outputs of optimal transmit powers. By consisting of densely residual connections between layers, the proposed DNN can efficiently exploit the hierarchical features of the input and motivates the feed-forward nature of DNN architecture. Experimental results showed that, compared to the conventional iterative optimization algorithm, the proposed DNN has excessively lower computational complexity with the trade-off of approximately only 1% loss in the sum rate and the fairness performance. This demonstrated that our proposed DNN is reasonably suitable for real-time signal processing in CF massive MIMO systems.

Citations (5)

Summary

We haven't generated a summary for this paper yet.