Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wav2vec-S: Semi-Supervised Pre-Training for Low-Resource ASR (2110.04484v2)

Published 9 Oct 2021 in eess.AS, cs.CL, and cs.SD

Abstract: Self-supervised pre-training could effectively improve the performance of low-resource automatic speech recognition (ASR). However, existing self-supervised pre-training are task-agnostic, i.e., could be applied to various downstream tasks. Although it enlarges the scope of its application, the capacity of the pre-trained model is not fully utilized for the ASR task, and the learned representations may not be optimal for ASR. In this work, in order to build a better pre-trained model for low-resource ASR, we propose a pre-training approach called wav2vec-S, where we use task-specific semi-supervised pre-training to refine the self-supervised pre-trained model for the ASR task thus more effectively utilize the capacity of the pre-trained model to generate task-specific representations for ASR. Experiments show that compared to wav2vec 2.0, wav2vec-S only requires a marginal increment of pre-training time but could significantly improve ASR performance on in-domain, cross-domain and cross-lingual datasets. Average relative WER reductions are 24.5% and 6.6% for 1h and 10h fine-tuning, respectively. Furthermore, we show that semi-supervised pre-training could close the representation gap between the self-supervised pre-trained model and the corresponding fine-tuned model through canonical correlation analysis.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Han Zhu (50 papers)
  2. Li Wang (470 papers)
  3. Jindong Wang (150 papers)
  4. Gaofeng Cheng (20 papers)
  5. Pengyuan Zhang (57 papers)
  6. Yonghong Yan (38 papers)
Citations (9)