Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Domain Decomposition Algorithms for Real-time Homogeneous Diffusion Inpainting in 4K (2110.03946v3)

Published 8 Oct 2021 in eess.IV

Abstract: Inpainting-based compression methods are qualitatively promising alternatives to transform-based codecs, but they suffer from the high computational cost of the inpainting step. This prevents them from being applicable to time-critical scenarios such as real-time inpainting of 4K images. As a remedy, we adapt state-of-the-art numerical algorithms of domain decomposition type to this problem. They decompose the image domain into multiple overlapping blocks that can be inpainted in parallel by means of modern GPUs. In contrast to classical block decompositions such as the ones in JPEG, the global inpainting problem is solved without creating block artefacts. We consider the popular homogeneous diffusion inpainting and supplement it with a multilevel version of an optimised restricted additive Schwarz (ORAS) method that solves the local problems with a conjugate gradient algorithm. This enables us to perform real-time inpainting of 4K colour images on contemporary GPUs, which is substantially more efficient than previous algorithms for diffusion-based inpainting.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Niklas Kämper (4 papers)
  2. Joachim Weickert (48 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.