Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimation of Constrained Mean-Covariance of Normal Distributions (2110.03819v1)

Published 7 Oct 2021 in stat.ME and stat.CO

Abstract: Estimation of the mean vector and covariance matrix is of central importance in the analysis of multivariate data. In the framework of generalized linear models, usually the variances are certain functions of the means with the normal distribution being an exception. We study some implications of functional relationships between covariance and the mean by focusing on the maximum likelihood and Bayesian estimation of the mean-covariance under the joint constraint $\bm{\Sigma}\bm{\mu} = \bm{\mu}$ for a multivariate normal distribution. A novel structured covariance is proposed through reparameterization of the spectral decomposition of $\bm{\Sigma}$ involving its eigenvalues and $\bm{\mu}$. This is designed to address the challenging issue of positive-definiteness and to reduce the number of covariance parameters from quadratic to linear function of the dimension. We propose a fast (noniterative) method for approximating the maximum likelihood estimator by maximizing a lower bound for the profile likelihood function, which is concave. We use normal and inverse gamma priors on the mean and eigenvalues, and approximate the maximum aposteriori estimators by both MH within Gibbs sampling and a faster iterative method. A simulation study shows good performance of our estimators.

Summary

We haven't generated a summary for this paper yet.