Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Developing Medical AI : a cloud-native audio-visual data collection study (2110.03660v1)

Published 17 Aug 2021 in cs.HC and cs.LG

Abstract: Designing AI solutions that can operate in real-world situations is a highly complex task. Deploying such solutions in the medical domain is even more challenging. The promise of using AI to improve patient care and reduce cost has encouraged many companies to undertake such endeavours. For our team, the goal has been to improve early identification of deteriorating patients in the hospital. Identifying patient deterioration in lower acuity wards relies, to a large degree on the attention and intuition of clinicians, rather than on the presence of physiological monitoring devices. In these care areas, an automated tool which could continuously observe patients and notify the clinical staff of suspected deterioration, would be extremely valuable. In order to develop such an AI-enabled tool, a large collection of patient images and audio correlated with corresponding vital signs, past medical history and clinical outcome would be indispensable. To the best of our knowledge, no such public or for-pay data set currently exists. This lack of audio-visual data led to the decision to conduct exactly such study. The main contributions of this paper are, the description of a protocol for audio-visual data collection study, a cloud-architecture for efficiently processing and consuming such data, and the design of a specific data collection device.

Summary

We haven't generated a summary for this paper yet.