Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Disentangling deep neural networks with rectified linear units using duality (2110.03403v1)

Published 6 Oct 2021 in cs.LG

Abstract: Despite their success deep neural networks (DNNs) are still largely considered as black boxes. The main issue is that the linear and non-linear operations are entangled in every layer, making it hard to interpret the hidden layer outputs. In this paper, we look at DNNs with rectified linear units (ReLUs), and focus on the gating property (on/off' states) of the ReLUs. We extend the recently developed dual view in which the computation is broken path-wise to show that learning in the gates is more crucial, and learning the weights given the gates is characterised analytically via the so called neural path kernel (NPK) which depends on inputs and gates. In this paper, we present novel results to show that convolution with global pooling and skip connection provide respectively rotational invariance and ensemble structure to the NPK. To addressblack box'-ness, we propose a novel interpretable counterpart of DNNs with ReLUs namely deep linearly gated networks (DLGN): the pre-activations to the gates are generated by a deep linear network, and the gates are then applied as external masks to learn the weights in a different network. The DLGN is not an alternative architecture per se, but a disentanglement and an interpretable re-arrangement of the computations in a DNN with ReLUs. The DLGN disentangles the computations into two mathematically' interpretable linearities (i) theprimal' linearity between the input and the pre-activations in the gating network and (ii) the dual' linearity in the path space in the weights network characterised by the NPK. We compare the performance of DNN, DGN and DLGN on CIFAR-10 and CIFAR-100 to show that, the DLGN recovers more than $83.5\%$ of the performance of state-of-the-art DNNs. This brings us to an interesting question:Is DLGN a universal spectral approximator?'

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (1)

Summary

We haven't generated a summary for this paper yet.