Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning Model Explainability for Inspection Accuracy Improvement in the Automotive Industry (2110.03384v1)

Published 7 Oct 2021 in cs.CV and cs.LG

Abstract: The welding seams visual inspection is still manually operated by humans in different companies, so the result of the test is still highly subjective and expensive. At present, the integration of deep learning methods for welds classification is a research focus in engineering applications. This work intends to apprehend and emphasize the contribution of deep learning model explainability to the improvement of welding seams classification accuracy and reliability, two of the various metrics affecting the production lines and cost in the automotive industry. For this purpose, we implement a novel hybrid method that relies on combining the model prediction scores and visual explanation heatmap of the model in order to make a more accurate classification of welding seam defects and improve both its performance and its reliability. The results show that the hybrid model performance is relatively above our target performance and helps to increase the accuracy by at least 18%, which presents new perspectives to the developments of deep Learning explainability and interpretability.

Summary

We haven't generated a summary for this paper yet.