Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MPSN: Motion-aware Pseudo Siamese Network for Indoor Video Head Detection in Buildings (2110.03302v5)

Published 7 Oct 2021 in cs.CV

Abstract: Head detection in the indoor video is an essential component of building occupancy detection. While deep models have achieved remarkable progress in general object detection, they are not satisfying enough in complex indoor scenes. The indoor surveillance video often includes cluttered background objects, among which heads have small scales and diverse poses. In this paper, we propose Motion-aware Pseudo Siamese Network (MPSN), an end-to-end approach that leverages head motion information to guide the deep model to extract effective head features in indoor scenarios. By taking the pixel-wise difference of adjacent frames as the auxiliary input, MPSN effectively enhances human head motion information and removes the irrelevant objects in the background. Compared with prior methods, it achieves superior performance on the two indoor video datasets. Our experiments show that MPSN successfully suppresses static background objects and highlights the moving instances, especially human heads in indoor videos. We also compare different methods to capture head motion, which demonstrates the simplicity and flexibility of MPSN. To validate the robustness of MPSN, we conduct adversarial experiments with a mathematical solution of small perturbations for robust model selection. Finally, for confirming its potential in building control systems, we apply MPSN to occupancy counting. Code is available at https://github.com/pl-share/MPSN.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Kailai Sun (8 papers)
  2. Xiaoteng Ma (24 papers)
  3. Peng Liu (373 papers)
  4. Qianchuan Zhao (28 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.