Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A uniformly accurate scheme for the numerical integration of penalized Langevin dynamics (2110.03222v2)

Published 7 Oct 2021 in math.NA and cs.NA

Abstract: In molecular dynamics, penalized overdamped Langevin dynamics are used to model the motion of a set of particles that follow constraints up to a parameter $\varepsilon$. The most used schemes for simulating these dynamics are the Euler integrator in $\mathbb{R}d$ and the constrained Euler integrator. Both have weak order one of accuracy, but work properly only in specific regimes depending on the size of the parameter $\varepsilon$. We propose in this paper a new consistent method with an accuracy independent of $\varepsilon$ for solving penalized dynamics on a manifold of any dimension. Moreover, this method converges to the constrained Euler scheme when $\varepsilon$ goes to zero. The numerical experiments confirm the theoretical findings, in the context of weak convergence and for the invariant measure, on a torus and on the orthogonal group in high dimension and high codimension.

Citations (2)

Summary

We haven't generated a summary for this paper yet.