Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Bird Classification with Unsupervised Sound Separation (2110.03209v1)

Published 7 Oct 2021 in eess.AS

Abstract: This paper addresses the problem of species classification in bird song recordings. The massive amount of available field recordings of birds presents an opportunity to use machine learning to automatically track bird populations. However, it also poses a problem: such field recordings typically contain significant environmental noise and overlapping vocalizations that interfere with classification. The widely available training datasets for species identification also typically leave background species unlabeled. This leads classifiers to ignore vocalizations with a low signal-to-noise ratio. However, recent advances in unsupervised sound separation, such as \emph{mixture invariant training} (MixIT), enable high quality separation of bird songs to be learned from such noisy recordings. In this paper, we demonstrate improved separation quality when training a MixIT model specifically for birdsong data, outperforming a general audio separation model by over 5 dB in SI-SNR improvement of reconstructed mixtures. We also demonstrate precision improvements with a downstream multi-species bird classifier across three independent datasets. The best classifier performance is achieved by taking the maximum model activations over the separated channels and original audio. Finally, we document additional classifier improvements, including taxonomic classification, augmentation by random low-pass filters, and additional channel normalization.

Citations (44)

Summary

We haven't generated a summary for this paper yet.