Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Cropped versus Uncropped Training Sets in Tabular Structure Detection (2110.02933v2)

Published 6 Oct 2021 in cs.CV

Abstract: Automated document processing for tabular information extraction is highly desired in many organizations, from industry to government. Prior works have addressed this problem under table detection and table structure detection tasks. Proposed solutions leveraging deep learning approaches have been giving promising results in these tasks. However, the impact of dataset structures on table structure detection has not been investigated. In this study, we provide a comparison of table structure detection performance with cropped and uncropped datasets. The cropped set consists of only table images that are cropped from documents assuming tables are detected perfectly. The uncropped set consists of regular document images. Experiments show that deep learning models can improve the detection performance by up to 9% in average precision and average recall on the cropped versions. Furthermore, the impact of cropped images is negligible under the Intersection over Union (IoU) values of 50%-70% when compared to the uncropped versions. However, beyond 70% IoU thresholds, cropped datasets provide significantly higher detection performance.

Citations (1)

Summary

We haven't generated a summary for this paper yet.